Unsupervised Attributed Multiplex Network Embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attributed Social Network Embedding

Embedding network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification and entity retrieval. However, most existing methods focused only on leveraging network structure. For social networks, besides the network structure, there also exists rich information about social actors, such as user profiles of friendship n...

متن کامل

Accelerated Attributed Network Embedding

Network embedding is to learn low-dimensional vector representations for nodes in a network. It has shown to be effective in a variety of tasks such as node classification and link prediction. While embedding algorithms on pure networks have been intensively studied, in many real-world applications, nodes are often accompanied with a rich set of attributes or features, aka attributed networks. ...

متن کامل

Deep Gaussian Embedding of Attributed Graphs: Unsupervised Inductive Learning via Ranking

Methods that learn representations of graph nodes play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss – an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent nodes ...

متن کامل

Unsupervised Document Embedding With CNNs

We propose a new model for unsupervised document embedding. Existing approaches either require complex inference or use recurrent neural networks that are difficult to parallelize. We take a different route and use recent advances in language modeling to develop a convolutional neural network embedding model. This allows us to train deeper architectures that are fully parallelizable. Stacking l...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2020

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v34i04.5985